MAJOR INTRA AND EXTRA CELLULAR ELECTROLYTES #### Remix education Everything is a remix ## **CONTENTS** **Introduction:** Bicarbonate(HCO₃) Replacement Therapy: Na Replacement K Replacement Ca Replacement Physiological acid base balance Factors altering the pH of Extra Cellular Fluid Electrolyte Combination Therapy ## INTRODUCTION - ❖ Body consists of 70% water - Intracellular water (fluid inside cells) ICF - * Extracellular water (fluid is outside the cells i.e. within interstitial tissues surrounding cells, blood plasma, and lymph) **ECF** - ❖ 2/3 of body weight is H₂O - 4 1/3 of H₂O is within cells - ❖ 1/3 of H₂O is extracellular in tissues surrounding cells - ❖ 25 % interstitial fluid (ISF) - ♦ 1-2 % in transcellular fluids CSF, intraocular fluids, serous membranes, GIT, respiratory and urinary tracts #### **Total body water** # MAJOR COMPARTMENTS FOR FLUIDS - ♣ INTRACELLULAR FLUID (ICF): Inside cell Most of body fluid here - 63% weight Decreased in elderly - EXTRACELLULAR FLUID (ECF): Outside cell - Intravascular fluid within blood vessels (5%) - Interstitial fluid between cells & blood vessels (15%) - Transcellular fluid cerebrospinal, pericardial and synovial fluid. #### **ELECTROLYTES** SUBSTANCE WHEN DISSOLVED IN SOLUTION SEPARATES INTO IONS & IS ABLE TO CARRY AN ELECTRICAL CURRENT CATION - POSITIVELY CHARGED ELECTROLYTE E.G. CA++ ANION - negatively charged electrolyte e.g. Cl-No of Cations must equal to no of Anions for homeostasis to exist in each fluid compartment **ELECTROLYTES IN BODY FLUID COMPARTMENTS:** <u>Íntracellular</u>: K, Mg, P Extracellular: Na, Cl, HCO₃- - Differences in concentration of ions on different sides of the cell membrane result from metabolic activity of the cell - Amount of **K** in the body determines the **volume of ICF** as the chief intracellular cation - ❖ Amount of Na in the body determines the volume of ECF as the chief extracellular cation - ❖ In electrolyte disturbances: primary concern is the concentration of various ions and the interrelation of positively and negatively charged ions with one another than the actual number. #### Units of concentration of electrolytes Expressed in units that define ability to combine with other ions **Equivalent weight:** molecular weight of substance in grams divided by valence - •1 equivalent weight dissolved in a liter solvent = equivalent per liter (1Eq/L) - •H₂SO₄ molar mass of 98 g mol⁻¹, and supplies two moles of H ions per mole of H₂SO₄, so its equivalent weight is 98 g mol⁻¹/2 eq mol⁻¹ = 49g eq⁻¹. Units expressed in milli equivalents per liter (1000 mEq = 1Eq) ## Disturbances of H₂O balance #### **DEHYDRATION: MOST COMMON** Inadequate intake of water, diarrhea or vomiting Excess H₂O loss, comatose or debilitated patients #### Over-hydration: less common - •Excessive fluid intake when renal function is impaired, renal disease; excessive administration of IV fluids - •Conditions that produce H₂O imbalance also disturb electrolyte composition - Most result from depletion of body electrolytes #### Depletion of electrolytes - Vomiting or diarrhea: Na and K depletion - •Excessive use of diuretics - •Excessive diuresis in diabetic acidosis - •Renal tubular disease #### **ELECTROLYTES** Na+: most abundant electrolyte in the body, chem. and osmotic gradient, osmosis, heart function and cell memb etc. K+: essential for normal membrane excitability for nerve impulse Cl: regulates osmotic pressure and assists in regulating acidbase balance Ca²⁺: usually combined with P to form the mineral salts of bones and teeth, promotes nerve impulse and muscle contraction/relaxation. Mg²⁺: plays role in carbohydrate and protein metabolism, storage and use of intracellular energy and neural transmission. Important in the functioning of the heart, nerves, and muscles. #### SODIUM/CHLORIDE IMBALANCE - Regulated by the **kidneys** - ☐ Influenced by the hormone aldosterone No is responsible for weter retention and serum - Na is responsible for water retention and serum - osmolarity level - Chloride ion frequently appears with the sodium ion - Normal Na = 135-145 mEq/L - Chloride 95-108 mEq/L - Na and Cl are concentrated in ECF ## Chloride - Maintains **serum osmolarity** along with Na - O Helps to maintain acid/base balance - Combines with other ions for **homeostasis**; sodium, hydrochloric acid, K,Ca - Closely tied to Na - Decreased level is most commonly due to GI losses ## **Functions of Sodium** - Transmission and conduction of nerve impulses - Responsible for osmolarity of vascular fluids - * Regulation of **body fluid levels** - Na shifts into cells and K shifts out of the cells (sodium pump) - ❖ Assists with regulation of acid-base balance by combining with Cl or HCO₃ to regulate the balance ## **Functions of Chloride** - Found in ECF - O Changes the serum osmolarity - Goes with Na in retention of water - Assists with regulation of acid-base balance - O CI combines with H to form HCI in stomach #### Hyponatremia Excessive sodium loss or H₂O gain CAUSES - Prolonged diuretic therapy - Excessive diaphoresis - Insufficient Na intake - GI losses laxatives, vomiting - Administration of hypotonic fluids - Compulsive water drinking - Labor induction with oxytocin - Cystic fibrosis - Alcoholism ## **SYMPTOMS** - Headache - Faintness - Confusion - Muscle cramping/twitching - > Increased weight - Convulsions ### Hyponatremia #### **ASSESSMENT** Monitor sign & symptoms in patients at risk - > Muscle weakness - > Tachycardia - > Fatigue - > Apathy - > Dry skin, pale mucus membranes - > Confusion - > Headache - Nausea/Vomiting, Abdominal cramps - Orthostatic hypotension #### Treatment - Restrict fluids - Monitor serum Na levels - IV normal saline or Lactated Ringers - If Na is below 115, mEq/L hypertonic saline is administered - May given a diuretic to increase H₂O loss - Encourage a balanced diet - Safety for weakness or confusion - Assist with ambulation if low B.P. #### Hypernatremia OCCURS WITH EXCESS LOSS OF H₂O OR EXCESSIVE RETENTION OF NA CAN LEAD TO DEATH IF NOT TREATED #### Causes Vomiting/diarrhea Diaphoresis Inadequate ADH Some drugs Hypertonic fluids Major burns #### Sign/Symptoms Thirst Flushed skin Dry mucus membranes Low urinary output Tachycardia Seizures Hyperactive deep tendon reflexes ## Treatment of Hypernatremia - Low Na diet - Encourage H₂O drinking - Monitor fluid intake on patients with heart or renal disease - Observe changes in B.P. and HR if hypovolemic - Monitor serum Na levels - Weigh monitoring ## Potassium Imbalances - K is the most abundant cation in the body cells - 97% is found in the ICF, plentiful in the GIT - Normal extracellular K+ is 3.5-5.3 - Serum K+level below 2.5 or above 7.0 can cause cardiac arrest - 80-90% is excreted through the kidneys #### **Functions** - Promotes conduction and transmission of nerve impulses - Contraction of muscle - Promotes enzyme action - Assist in the maintenance of acid-base balanceFood sources veggies, fruits, nuts and meat ## Hypokalemia #### Low potassium level #### **CAUSES** - Prolonged diuretic therapy - > Inadequate intake - > Severe diaphoresis - > Use of laxative, vomiting - > Excess insulin - > Excess stress - > Hepatic disease - > Acute alcoholism # Signs and Symptoms of hypocalemia - Anorexia - Nausea, vomiting - Drowsiness, lethargy, confusion - > Leg cramps - Muscle weakness - Hyperreflexia (overactive or overresponsive reflexes). - Hypotension - Cardiac dysrhythmias - Polyuria #### **HYPERKALEMIA** - Higher than normal levels of K - > Decreased pH(acidosis) - > Results form impaired renal function - Metabolic acidosis - Acts as myocardial depressant; decreased heart rate, cardiac output - > Muscle weakness - GI hyperactivity ## Etiology - Increased dietary intake - Excessive administration of K+ - Excessive use of salt substitutes - Widespread cell damage, burns, trauma - Administration of larger quantities of blood that is old - Renal failure ## Signs and Symptoms - > Apathy - Confusion - Numbness/ paresthesia of extremities - Abdominal cramps - Nausea - > Flaccid muscles - Diarrhea - Oliguria - Bradycardia - Cardiac arrest ## Calcium - About 99% of body Ca is found in bones and the remaining is present in ECF. - It is important for blood clotting and contraction of various smooth muscles. - In cardiovascular system (CVS) Ca is essential for contraction coupling in cardiac muscles as well as for the conduction of electric impulse in certain regions of heart. - ➤ It plays role in maintaining the integrity of mucosal membrane, cell adhesion and function of the individual cell membrane as well. ### Physiological role of Calcium - Calcium is found mainly in the ECF whilst P is found mostly in the ICF. - ▶ Both are important in the maintenance of healthy bone and teeth. - Ca is also important in the transmission of nerve impulses across synapses, the clotting of blood and the contraction of muscles. If the levels of **Ca fall** below normal level both muscles and **nerves become more excitable.** ## Calcium - Regulated by the parathyroid glandParathyroid hormone - ➤ Helps with calcium retention and phosphate excretion through the kidneys - > Promotes calcium absorption in the intestines - > Helps mobilize calcium from the bone ## Hypercalcemia: - When the level of Calcium rises above normal, (Hypercalcemia) Increased serum levels of Ca⁺⁺ - the nervous system is depressed, and the reflux action of CNS can become sluggish. - It also decreases the QT interval of the heart which can lead to cardiac arrhythmia. - ☐ It causes constipation and lack of appetite and depresses contractility of the muscle walls of the GIT. #### HYPERCALCEMIA: The depressive effect begins to appear when blood Calcium level rises above 12mg/dl and beyond 17 mg/dl CaPO₄ crystals are likely to ppt throughout the body. This situation occurs due to hypoparathyroidism, vit D deficiency, Osteoblastic metastasis, steatorrhea (fatty stools), Cushing syndrome (hyper active adrenal cortex), acute pancreatitis and acute hypophosphatemia. #### Signs and Symptoms - Muscle weakness - Personality changes - Nausea and vomiting - > Extreme thirst - > Anorexia - Constipation - > Polyuria - Pathological fractures - > Calcifications in the skin and cornea - Cardiac arrest ## Hypocalcemia: - Change in blood pH can influence the degree of calcium binding to plasma proteins. With acidosis less calcium is bound to plasma proteins. - When calcium ion concentration falls below normal, the excitability of the nerve and muscle cells increases markedly. ### Chloride - Chloride major extracellular anion is principally responsible for maintaining proper hydration, osmotic pressure, and normal cation anion balance in vascular and interstitial compartment. - The concentration of chloride is 103mEq/l in extracellular fluid, and 4 mEq/l in intracellular fluid. #### Hypochloremia: (Decreased chloride concentration): #### It can be the result of - -salt losing nephritis, leading to lack of tubular reabsorbtion of chloride, - -metabolic acidosis such as found in diabetes mellitus, - -in renal failure and prolonged vomiting. #### Hyperchloremia: (Increased concentration of chloride): may be due to dehydration, decreased renal blood flow found with congestive heart failure (CHF) or excessive chloride intake. ## Phosphate #### IT IS PRINCIPAL ANION OF ICF COMPARTMENT. -Inorganic phosphate in the plasma is mainly in two forms - i)HPO₄ - ii) H₂PO₄ The concentration of HPO₄ is 1.05 mmole/L and the concentration of H₂PO₄0.26 mmole/L. When the total quantity of the phosphate in ECF rises so does the concentration of each of these ions. ## WHEN PH OF THE ECF BECOMES MORE ACIDIC THERE IS relative increase in $\underset{2}{\text{HPO}_4}$ and decrease in $\underset{4}{\text{HPO}_{\frac{1}{4}}}$ and vice versa. - P is essential for proper metabolism of calcium, normal bone and tooth development. - HPO -and HPO makes an important buffer system - 4 2 4 - of body. ## Bicarbonate - It is the second most prevalent anion in ECF. Along with carbonic acid it acts as body's most important buffer system. - Each day kidney filters about 4320 milliequivalents of bicarbonate and under normal conditions all of this is reabsorbed from the tubules, thereby conserving the primary buffer system of the extracellular fluid. - When there is reduction in the ECF hydrogen ion concentration (alkalosis) the kidneys fail to reabsorb all the filtered bicarbonate thereby increasing the excretion of bicarbonate. - Because bicarbonate ions normally buffer hydrogen in the extracellular fluid, this loss of bicarbonate is as good as adding a hydrogen ion to the extracellular fluid. - Therefore, in alkalosis, the <u>removal</u> of <u>bicarbonate</u> ions <u>raises</u> the ECF <u>hydrogen ion concentration</u> back towards normal. - In acidosis the kidneys reabsorb all the filtered bicarbonate and produces new bicarbonate which is added back to the ECF. - This reduces the ECF H +concentration back towards normal. i.e. reverse of acidosis since HCO₃ is alkaline ## THANK YOU www.remixeducation.in #### Remix education Everything is a remix