Acid base buffer and its disorder

www.remixeducation.in

Remix education

Everything is a remix

FOR OPTIMAL FUNCTIONING OF CELLS...

- Acids and bases in the body must be in balance.
- We all consume every day food and drinks which contain acids, metabolism produces also acids...

BODY PH BALANCE

- Chemical blood buffers:
- Lungs,
- > Cells,
- Kidneys

Defences against changes in hydrogen concentration (getting acidotic..)

YOU GET ACIDOTIC EVERY DAY......

While living, eating and drinking...there is-Production of 1 mmol of fixed acid/kg body weight per day (60 kg=60 mmol/day)

BUFFERS

Extracellular....

Hemoglobin

('Chloride shift'-for each chloride leaving the cell-one bicarbonate ion enters)

Plasma protein

(with the liver, varying the amount of H-ions in the protein structure)

Bicarbonate system:

Normal acid to base ratio is 20:1

20 parts bicarbonate to 1 part carbonic acid (H₂CO₃=CO₂), Neutralizing a strong acid bicarb. will be lost

Everything is a remix

Human Acid-base Homeostasis

- > Tight regulation:
- CO₂ tension
 - by respiratory excretion (of volatile acids)
- Plasma bicarbonate [HCO₃-]
 - By renal HCO₃-reabsorption and
- Elimination of protons produced by metabolism
- pH is determined by CO₂ tension and [HCO₃]
- Human Acid-base Homeostasis

Everything is a remix

PHYSIOLOGY OF BUFFERING

Ability of a solution containing a weak or poorly dissociated acid and its anion (a base) to resist change in pH when strong acid or alkali is added

- > 1 ml of 0.1 M HCl to 9 ml distilled water =
- \rightarrow [H⁺] from 10⁻⁷ M to 10⁻² M= pH from 7 to 2
- > 1 ml of 0.1 M HCl to 9 ml of <u>phosphate buffer</u>: dissoc. H⁺ combines with [HPO₄²⁻] = (H₂PO₄⁻)
- pH fall of only 0.1= to 6.9

BICARBONATE BUFFER Everything is a remix

- Extracellular most important buffer
- Proteins and phosphate buffer less important
- > Intracellular phosphate- most important b.
- Equilibrium conditions because abundant carbonic anhydrase in blood
- \rightarrow H⁺ + HCO₃⁻ \Leftrightarrow H₂CO₃ \Leftrightarrow H₂O + CO₂
- \rightarrow [H⁺]= Keq x [H₂CO₃]/[HCO₃⁻]

Everything is a remix

ACIDOSIS

- Clinical effects of severe acidosis: pH <7.2</p>
- Cardiovascular system effects:
- Decreased myocardial contractility
- Decreased cardiac output
- Cardiac failure
- Hypotension
- Decreased hepatic and renal blood flow
- Centralization of effective blood volume
- Tissue hypoxia
- Pulmonary edema

Everything is a remix

METABOLIC ACIDOSIS

- ► Hallmark is \$\forall [HCO₃-]
- Acid production 1 net acid intake 1 above net renal excretion
- (ketoacidosis, lactic acidosis, ammonium chloride loading)
- failure of renal net excretion (chronic renal failure, renal tubular acidosis)
- Bicarbonate loss via the gastroinestinal tract (diarrhea, gastrointestinal fistula)
- Nonbicarbonate solutions added to ECF (dilutional acidosis)

Everything is a remix

RESPIRATORY ACIDOSIS

- Acute increase in pCO₂
- Buffered primarily by intracellular buffers
- Chronic state:
- Kidneys compensation:
- Increase net acid excretion,
- (48 hours for fully development)
- Underlying cause:
- Central nervous system disease,
- lung (COPD) and heart disease,
- sedatives and opiates depressing the respiratory center
- Hypercapnic encephalopathy can develop

METABOLIC ALKALOSIS

- Plasma bicarbonate [HCO₃-] ↑ = pH ↑
- > H+ GI loss or shift into cells
- Excess HCO₃⁻
 Administration of 1 bicarbonate, or precursors: 1 lactate, acetate, citrate or
- Failure to excrete: mineralocorticoid effect
- Loss of fluid with
 - Diuretic therapy
 - [Cl-], [K+] and [H+] loss from plasmaextracellular volume contraction

ALKALOSIS

Everything is a remix

Table 11.11 Major adverse consequences of severe alkalemia

Cardiovascular

Arteriolar constriction

Reduction in coronary blood flow

Reduction in angina treshold

Predisposition to refractory arrhythmias

Respiratory

Hypoventilation with attendant hypercapnia and hypoxemia

Metabolic

Stimulation of anaerobic glycolysis and lactic acid production

Hypokalemia, hypomagnesia, and hypophosphatemia Decreased plasma ionized calcium concentration

Cerebral

Reduction of cerebral blood flow Tetany, seizures, lethargy, delirium, and stupor

RESPIRATORY ALKALOSIS

pCO2 ↓, pH ft due to:

Hypoxia (compensatory hyperventilation)

- Acute: pulmonary edema or emboli, pneumonia,
- Chronic: severe anemia, high altitude, hypotension

Respiratory center stimulation

Pregnancy, Anxiety, Fever, heat stroke, sepsis, salisylate intox., cerebral disease, hepatic cirrhosis,

Increased mechanical ventilation

RESPIRATORY ALKALOSIS

- Most common acid-base disorder
 Physiologic in pregnancy and high altitude
- Bad prognosis in critically ill patients
 (the higher hypocapnia, the higher mortality)
- > Hyperventilation,
- Perioral and extremity paresthesias,
- Light-headedness,
- Muscle cramps,
- ► Hyperreflexia, seizures, ↓ ionized Ca ⇒ tetany

Everything is a remix

Thank you

www.remixeducation.in